Explicit specialization for the stop case of NTimesDerivable class. More...
#include <roboptim/core/n-times-derivable-function.hh>
Public Member Functions | |
virtual size_type | derivabilityOrderMax () const |
Returns the maximum derivability order (relevant for N>2 only) | |
virtual | ~NTimesDerivableFunction () throw () |
size_type | derivativeSize () const throw () |
Return the size of the derivative vector. | |
bool | isValidDerivative (const gradient_t &derivative) const throw () |
Check if a derivative is valid (check sizes). | |
result_t | operator() (double argument) const throw () |
Evaluate the function at a specified point. | |
void | operator() (result_t &result, double argument) const throw () |
Evaluate the function at a specified point. | |
gradient_t | derivative (double argument, size_type order=1) const throw () |
Compute the derivative of the function. | |
void | derivative (gradient_t &derivative, double argument, size_type order=1) const throw () |
Compute the derivative of the function. | |
virtual std::ostream & | print (std::ostream &o) const throw () |
Display the function on the specified output stream. | |
Static Public Attributes | |
static const size_type | derivabilityOrder = 2 |
Function derivability order. | |
Protected Member Functions | |
NTimesDerivableFunction (size_type outputSize=1, std::string name=std::string()) throw () | |
Concrete class constructor should call this constructor. | |
void | impl_compute (result_t &result, const argument_t &argument) const throw () |
Function evaluation. | |
virtual void | impl_compute (result_t &result, double t) const =0 throw () |
Function evaluation. | |
void | impl_gradient (gradient_t &gradient, const argument_t &argument, size_type functionId=0) const throw () |
Gradient evaluation. | |
virtual void | impl_derivative (gradient_t &derivative, double argument, size_type order=1) const =0 throw () |
Derivative evaluation. | |
void | impl_hessian (hessian_t &hessian, const argument_t &argument, size_type functionId=0) const throw () |
Hessian evaluation. |
Explicit specialization for the stop case of NTimesDerivable class.
This specialization defines the interface of a ``n times derivable function'' and implements generic methods required by upper classes using this class specific interface.
virtual roboptim::NTimesDerivableFunction< 2 >::~NTimesDerivableFunction | ( | ) | throw () [inline, virtual] |
roboptim::NTimesDerivableFunction< 2 >::NTimesDerivableFunction | ( | size_type | outputSize = 1 , |
std::string | name = std::string () |
||
) | throw () [inline, protected] |
Concrete class constructor should call this constructor.
outputSize | output size (result size) |
name | function's name |
virtual size_type roboptim::NTimesDerivableFunction< 2 >::derivabilityOrderMax | ( | ) | const [inline, virtual] |
Returns the maximum derivability order (relevant for N>2 only)
gradient_t roboptim::NTimesDerivableFunction< 2 >::derivative | ( | double | argument, |
size_type | order = 1 |
||
) | const throw () [inline] |
Compute the derivative of the function.
Derivative is computed for a certain order, at a given point.
argument | point at which the derivative will be computed |
order | derivative order (if 0 then function is evaluated) |
void roboptim::NTimesDerivableFunction< 2 >::derivative | ( | gradient_t & | derivative, |
double | argument, | ||
size_type | order = 1 |
||
) | const throw () [inline] |
Compute the derivative of the function.
Derivative is computed for a certain order, at a given point.
derivative | derivative will be stored in this vector |
argument | point at which the derivative will be computed |
order | derivative order (if 0 then function is evaluated) |
References roboptim::NTimesDerivableFunction< DerivabilityOrder >::derivabilityOrderMax().
size_type roboptim::NTimesDerivableFunction< 2 >::derivativeSize | ( | ) | const throw () [inline] |
Return the size of the derivative vector.
void roboptim::NTimesDerivableFunction< 2 >::impl_compute | ( | result_t & | result, |
const argument_t & | argument | ||
) | const throw () [inline, protected, virtual] |
Function evaluation.
Implement generic function evaluation, as required by Function, using this class evaluation method (using a double instead of a vector).
result | result will be stored in this vector |
argument | point at which the function will be evaluated |
Implements roboptim::GenericFunction< T >.
virtual void roboptim::NTimesDerivableFunction< 2 >::impl_compute | ( | result_t & | result, |
double | t | ||
) | const throw () [protected, pure virtual] |
Function evaluation.
Evaluate the function, has to be implemented in concrete classes.
result | result will be stored in this vector |
t | point at which the function will be evaluated |
virtual void roboptim::NTimesDerivableFunction< 2 >::impl_derivative | ( | gradient_t & | derivative, |
double | argument, | ||
size_type | order = 1 |
||
) | const throw () [protected, pure virtual] |
Derivative evaluation.
Compute the derivative, has to be implemented in concrete classes.
derivative | derivative will be store in this argument |
argument | point where the gradient will be computed |
order | derivative order (if 0 evaluates the function) |
void roboptim::NTimesDerivableFunction< 2 >::impl_gradient | ( | gradient_t & | gradient, |
const argument_t & | argument, | ||
size_type | functionId = 0 |
||
) | const throw () [inline, protected, virtual] |
Gradient evaluation.
Implement the gradient computation, as required by DerivableFunction. The gradient is computed for a specific sub-function which id is passed through the functionId argument.
gradient | gradient will be store in this argument |
argument | point where the gradient will be computed |
functionId | evaluated function id in the split representation |
ROBOPTIM_DO_NOT_CHECK_ALLOCATION
Implements roboptim::GenericDifferentiableFunction< T >.
void roboptim::NTimesDerivableFunction< 2 >::impl_hessian | ( | hessian_t & | hessian, |
const argument_t & | argument, | ||
size_type | functionId = 0 |
||
) | const throw () [inline, protected, virtual] |
Hessian evaluation.
Implement the hessian computation, as required by the TwiceDerivableFunction class using the derivative method. The hessian is computed for a specific sub-function which id is passed through the functionId argument.
hessian | hessian will be stored here |
argument | point where the hessian will be computed |
functionId | evaluated function id in the split representation |
Implements roboptim::GenericTwiceDifferentiableFunction< T >.
bool roboptim::NTimesDerivableFunction< 2 >::isValidDerivative | ( | const gradient_t & | derivative | ) | const throw () [inline] |
Check if a derivative is valid (check sizes).
derivative | derivative vector to be checked |
result_t roboptim::NTimesDerivableFunction< 2 >::operator() | ( | double | argument | ) | const throw () [inline] |
Evaluate the function at a specified point.
The program will abort if the argument does not have the expected size.
argument | point at which the function will be evaluated |
void roboptim::NTimesDerivableFunction< 2 >::operator() | ( | result_t & | result, |
double | argument | ||
) | const throw () [inline] |
Evaluate the function at a specified point.
The program will abort if the argument does not have the expected size.
result | result will be stored in this vector |
argument | point at which the function will be evaluated |
virtual std::ostream& roboptim::NTimesDerivableFunction< 2 >::print | ( | std::ostream & | o | ) | const throw () [inline, virtual] |
Display the function on the specified output stream.
o | output stream used for display |
Reimplemented from roboptim::GenericTwiceDifferentiableFunction< T >.
References roboptim::NTimesDerivableFunction< DerivabilityOrder >::derivabilityOrderMax().
const size_type roboptim::NTimesDerivableFunction< 2 >::derivabilityOrder = 2 [static] |
Function derivability order.
One static const variable per class in inheritance structure.