|
| ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericDifferentiableFunction< T >) |
|
| FivePointsRule (const GenericFunction< T > &adaptee) |
|
void | computeColumn (value_type epsilon, gradient_ref column, const_argument_ref argument, size_type colIdx, argument_ref xEps) const |
|
void | computeGradient (value_type epsilon, gradient_ref gradient, const_argument_ref argument, size_type idFunction, argument_ref xEps) const |
|
void | computeJacobian (value_type epsilon, jacobian_ref jacobian, const_argument_ref argument, argument_ref xEps) const |
|
void | compute_deriv (typename GenericFunction< T >::size_type j, double h, double &result, double &round, double &trunc, typename GenericFunction< T >::const_argument_ref argument, typename GenericFunction< T >::size_type idFunction, typename GenericFunction< T >::argument_ref xEps) const |
| Algorithm from the Gnu Scientific Library. More...
|
|
template<> |
void | computeGradient (value_type epsilon, gradient_ref gradient, const_argument_ref argument, size_type idFunction, argument_ref xEps) const |
|
template<> |
void | computeJacobian (value_type epsilon, jacobian_ref jacobian, const_argument_ref argument, argument_ref xEps) const |
|
template<> |
void | computeColumn (value_type, gradient_ref, const_argument_ref, size_type, argument_ref) const |
|
| ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericDifferentiableFunction< T >) |
|
| Policy (const GenericFunction< T > &adaptee) |
|
virtual | ~Policy () |
| Virtual destructor. More...
|
|
value_type & | sparseEpsilon () |
| Get a reference to the epsilon used to converse dense to sparse matrices. More...
|
|
template<typename T>
class roboptim::finiteDifferenceGradientPolicies::FivePointsRule< T >
Precise finite difference gradient computation.
Finite difference is computed using five-points stencil (i.e. \(\{x-2h, x-h, x, x+h, x+2h\}\)).