Precise finite difference gradient computation. More...
#include <roboptim/core/fwd.hh>
 
  
 | Public Member Functions | |
| ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericDifferentiableFunction< T >) | |
| FivePointsRule (const GenericFunction< T > &adaptee) | |
| void | computeColumn (value_type epsilon, gradient_ref column, const_argument_ref argument, size_type colIdx, argument_ref xEps) const | 
| void | computeGradient (value_type epsilon, gradient_ref gradient, const_argument_ref argument, size_type idFunction, argument_ref xEps) const | 
| void | computeJacobian (value_type epsilon, jacobian_ref jacobian, const_argument_ref argument, argument_ref xEps) const | 
| void | compute_deriv (typename GenericFunction< T >::size_type j, double h, double &result, double &round, double &trunc, typename GenericFunction< T >::const_argument_ref argument, typename GenericFunction< T >::size_type idFunction, typename GenericFunction< T >::argument_ref xEps) const | 
| Algorithm from the Gnu Scientific Library.  More... | |
| template<> | |
| void | computeGradient (value_type epsilon, gradient_ref gradient, const_argument_ref argument, size_type idFunction, argument_ref xEps) const | 
| template<> | |
| void | computeJacobian (value_type epsilon, jacobian_ref jacobian, const_argument_ref argument, argument_ref xEps) const | 
| template<> | |
| void | computeColumn (value_type, gradient_ref, const_argument_ref, size_type, argument_ref) const | 
|  Public Member Functions inherited from roboptim::finiteDifferenceGradientPolicies::Policy< T > | |
| ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericDifferentiableFunction< T >) | |
| Policy (const GenericFunction< T > &adaptee) | |
| virtual | ~Policy () | 
| Virtual destructor.  More... | |
| value_type & | sparseEpsilon () | 
| Get a reference to the epsilon used to converse dense to sparse matrices.  More... | |
| Additional Inherited Members | |
|  Protected Member Functions inherited from roboptim::finiteDifferenceGradientPolicies::Policy< T > | |
| template<> | |
| void | computeJacobian (value_type epsilon, jacobian_ref jacobian, const_argument_ref argument, argument_ref xEps) const | 
|  Protected Attributes inherited from roboptim::finiteDifferenceGradientPolicies::Policy< T > | |
| const GenericFunction< T > & | adaptee_ | 
| Wrapped function.  More... | |
| vector_t | column_ | 
| Vector storing temporary Jacobian column.  More... | |
| gradient_t | gradient_ | 
| Vector storing temporary Jacobian row.  More... | |
| value_type | sparseEps_ | 
| Threshold used for the conversion from dense to sparse matrix.  More... | |
Precise finite difference gradient computation.
Finite difference is computed using five-points stencil (i.e. \(\{x-2h, x-h, x, x+h, x+2h\}\)).
| 
 | inlineexplicit | 
| void roboptim::finiteDifferenceGradientPolicies::FivePointsRule< T >::compute_deriv | ( | typename GenericFunction< T >::size_type | j, | 
| double | h, | ||
| double & | result, | ||
| double & | round, | ||
| double & | trunc, | ||
| typename GenericFunction< T >::const_argument_ref | argument, | ||
| typename GenericFunction< T >::size_type | idFunction, | ||
| typename GenericFunction< T >::argument_ref | xEps | ||
| ) | const | 
Algorithm from the Gnu Scientific Library.
| 
 | virtual | 
| 
 | inlinevirtual | 
| 
 | virtual | 
| 
 | inlinevirtual | 
| 
 | virtual | 
Reimplemented from roboptim::finiteDifferenceGradientPolicies::Policy< T >.
Referenced by roboptim::finiteDifferenceGradientPolicies::FivePointsRule< T >::computeJacobian().
| 
 | inlinevirtual | 
ROBOPTIM_DO_NOT_CHECK_ALLOCATION
ROBOPTIM_DO_NOT_CHECK_ALLOCATION
Reimplemented from roboptim::finiteDifferenceGradientPolicies::Policy< T >.
References roboptim::finiteDifferenceGradientPolicies::FivePointsRule< T >::computeJacobian(), roboptim::is_malloc_allowed(), and roboptim::set_is_malloc_allowed().
| roboptim::finiteDifferenceGradientPolicies::FivePointsRule< T >::ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ | ( | GenericDifferentiableFunction< T > | ) |