util.hh File Reference
#include <roboptim/core/fwd.hh>
#include <roboptim/core/portability.hh>
#include <vector>
#include <utility>
#include <map>
#include <roboptim/core/twice-differentiable-function.hh>
#include <roboptim/core/util.hxx>

Namespaces

namespace  roboptim
 

defined(EIGEN_RUNTIME_NO_MALLOC) && !defined(ROBOPTIM_DO_NOT_CHECK_ALLOCATION)


namespace  roboptim::detail

Functions

ROBOPTIM_DLLAPI void roboptim::detail::vector_to_array (Function::value_type *dst, Function::const_vector_ref src)
ROBOPTIM_DLLAPI void roboptim::detail::array_to_vector (Function::vector_ref dst, const Function::value_type *src)
template<typename T >
void roboptim::detail::jacobian_from_gradients (DifferentiableFunction::matrix_ref jac, const std::vector< const T * > &c, DifferentiableFunction::const_vector_ref x)
template<typename T >
std::ostream & roboptim::operator<< (std::ostream &, const std::vector< T > &)
 Display a vector.
template<typename T1 , typename T2 >
std::ostream & roboptim::operator<< (std::ostream &, const std::pair< T1, T2 > &)
 Display a pair.
template<typename T1 , typename T2 >
std::ostream & roboptim::operator<< (std::ostream &, const std::map< T1, T2 > &)
 Display a map.
template<typename T >
std::ostream & roboptim::operator<< (std::ostream &, const Eigen::MatrixBase< T > &)
 Display an Eigen object with the appropriate IOFormat.
ROBOPTIM_DLLAPI
GenericFunctionTraits
< EigenMatrixDense >::matrix_t 
roboptim::sparse_to_dense (GenericFunctionTraits< EigenMatrixSparse >::const_matrix_ref m)
 Convert a sparse matrix into a dense matrix.
ROBOPTIM_DLLAPI
GenericFunctionTraits
< EigenMatrixDense >::vector_t 
roboptim::sparse_to_dense (GenericFunctionTraits< EigenMatrixSparse >::const_gradient_ref v)
 Convert a sparse vector into a dense vector.
ROBOPTIM_DLLAPI bool roboptim::allclose (const Eigen::SparseMatrix< double > &a, const Eigen::SparseMatrix< double > &b, double rtol=Eigen::NumTraits< double >::dummy_precision(), double atol=Eigen::NumTraits< double >::epsilon())
 Compare sparse vectors (matrices) using both relative and absolute tolerances.
ROBOPTIM_DLLAPI bool roboptim::allclose (const Eigen::Ref< const Eigen::MatrixXd > &a, const Eigen::Ref< const Eigen::MatrixXd > &b, double rtol=Eigen::NumTraits< double >::dummy_precision(), double atol=Eigen::NumTraits< double >::epsilon())
 Compare dense vectors (matrices) using both relative and absolute tolerances.
template<typename U >
void roboptim::copySparseBlock (U &matrix, const U &block, Function::size_type startRow, Function::size_type startCol, bool compress=false)
 Copy a sparse block into a sparse matrix.
double roboptim::normalize (double x)
 Apply normalize to a scalar.
template<typename T >
roboptim::normalize (const T &x)
 Apply normalize to each element of an Eigen vector.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines