All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Mathematical functions

Classes

class  roboptim::GenericConstantFunction< T >
 Constant function. More...
 
class  roboptim::Cos< T >
 Cos function. More...
 
class  roboptim::GenericIdentityFunction< T >
 Identity function. More...
 
class  roboptim::Polynomial< T >
 Polynomial function. More...
 
class  roboptim::Sin< T >
 Sin function. More...
 
class  roboptim::NTimesDerivableFunction< DerivabilityOrder >
 Define a \(\mathbb{R} \rightarrow \mathbb{R}^m\) function, derivable n times ( \(n \geq 2\)). More...
 
class  roboptim::NTimesDerivableFunction< 2 >
 Explicit specialization for the stop case of NTimesDerivable class. More...
 
class  roboptim::GenericNumericLinearFunction< T >
 Build a linear function from a vector and a matrix. More...
 
class  roboptim::GenericNumericQuadraticFunction< T >
 Build a quadratic function from a matrix and a vector. More...
 

Functions

void roboptim::Cos< T >::impl_gradient (gradient_ref gradient, const_argument_ref x, size_type) const
 Gradient evaluation. More...
 
void roboptim::Cos< T >::impl_jacobian (jacobian_ref jacobian, const_argument_ref x) const
 Jacobian evaluation. More...
 
void roboptim::Cos< T >::impl_hessian (hessian_ref hessian, const_argument_ref x, size_type) const
 Hessian evaluation. More...
 
void roboptim::GenericIdentityFunction< T >::impl_gradient (gradient_ref gradient, const_argument_ref, size_type idFunction) const
 Gradient evaluation. More...
 
void roboptim::Sin< T >::impl_gradient (gradient_ref gradient, const_argument_ref x, size_type) const
 Gradient evaluation. More...
 
void roboptim::Sin< T >::impl_jacobian (jacobian_ref jacobian, const_argument_ref x) const
 Jacobian evaluation. More...
 
void roboptim::Sin< T >::impl_hessian (hessian_ref hessian, const_argument_ref x, size_type) const
 Hessian evaluation. More...
 

Detailed Description

Function Documentation

template<typename T >
void roboptim::Cos< T >::impl_gradient ( gradient_ref  gradient,
const_argument_ref  argument,
size_type  functionId 
) const
protectedvirtual

Gradient evaluation.

Compute the gradient, has to be implemented in concrete classes. The gradient is computed for a specific sub-function whose id is passed through the functionId argument.

Warning
Do not call this function directly, call gradient instead.
Parameters
gradientgradient will be stored in this vector
argumentpoint where the gradient will be computed
functionIdevaluated function id in the split representation

Implements roboptim::GenericDifferentiableFunction< T >.

template<typename T >
void roboptim::Sin< T >::impl_gradient ( gradient_ref  gradient,
const_argument_ref  argument,
size_type  functionId 
) const
protectedvirtual

Gradient evaluation.

Compute the gradient, has to be implemented in concrete classes. The gradient is computed for a specific sub-function whose id is passed through the functionId argument.

Warning
Do not call this function directly, call gradient instead.
Parameters
gradientgradient will be stored in this vector
argumentpoint where the gradient will be computed
functionIdevaluated function id in the split representation

Implements roboptim::GenericDifferentiableFunction< T >.

template<typename T >
void roboptim::GenericIdentityFunction< T >::impl_gradient ( gradient_ref  gradient,
const_argument_ref  argument,
size_type  functionId 
) const
protectedvirtual

Gradient evaluation.

Compute the gradient, has to be implemented in concrete classes. The gradient is computed for a specific sub-function whose id is passed through the functionId argument.

Warning
Do not call this function directly, call gradient instead.
Parameters
gradientgradient will be stored in this vector
argumentpoint where the gradient will be computed
functionIdevaluated function id in the split representation

Implements roboptim::GenericDifferentiableFunction< T >.

template<typename T >
void roboptim::Sin< T >::impl_hessian ( hessian_ref  hessian,
const_argument_ref  argument,
size_type  functionId 
) const
protectedvirtual

Hessian evaluation.

Compute the hessian, has to be implemented in concrete classes. The hessian is computed for a specific sub-function which id is passed through the functionId argument.

Warning
Do not call this function directly, call hessian instead.
Parameters
hessianhessian will be stored here
argumentpoint where the hessian will be computed
functionIdevaluated function id in the split representation

Implements roboptim::GenericTwiceDifferentiableFunction< T >.

template<typename T >
void roboptim::Cos< T >::impl_hessian ( hessian_ref  hessian,
const_argument_ref  argument,
size_type  functionId 
) const
protectedvirtual

Hessian evaluation.

Compute the hessian, has to be implemented in concrete classes. The hessian is computed for a specific sub-function which id is passed through the functionId argument.

Warning
Do not call this function directly, call hessian instead.
Parameters
hessianhessian will be stored here
argumentpoint where the hessian will be computed
functionIdevaluated function id in the split representation

Implements roboptim::GenericTwiceDifferentiableFunction< T >.

template<typename T >
void roboptim::Cos< T >::impl_jacobian ( jacobian_ref  jacobian,
const_argument_ref  arg 
) const
protectedvirtual

Jacobian evaluation.

Computes the jacobian, can be overridden by concrete classes. The default behavior is to compute the jacobian from the gradient.

Warning
Do not call this function directly, call jacobian instead.
Parameters
jacobianjacobian will be store in this argument
argpoint where the jacobian will be computed

Reimplemented from roboptim::GenericDifferentiableFunction< T >.

template<typename T >
void roboptim::Sin< T >::impl_jacobian ( jacobian_ref  jacobian,
const_argument_ref  arg 
) const
protectedvirtual

Jacobian evaluation.

Computes the jacobian, can be overridden by concrete classes. The default behavior is to compute the jacobian from the gradient.

Warning
Do not call this function directly, call jacobian instead.
Parameters
jacobianjacobian will be store in this argument
argpoint where the jacobian will be computed

Reimplemented from roboptim::GenericDifferentiableFunction< T >.