Example shows finite differences gradient use.
// Copyright (C) 2009 by Thomas Moulard, AIST, CNRS, INRIA. // // This file is part of the roboptim. // // roboptim is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // roboptim is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with roboptim. If not, see <http://www.gnu.org/licenses/>. #include "shared-tests/fixture.hh" #include <iostream> #include <roboptim/core/io.hh> #include <roboptim/core/finite-difference-gradient.hh> #include <roboptim/core/indent.hh> #include <roboptim/core/visualization/gnuplot.hh> #include <roboptim/core/visualization/gnuplot-commands.hh> #include <roboptim/core/visualization/gnuplot-function.hh> using namespace roboptim; using namespace roboptim::visualization; using namespace roboptim::visualization::gnuplot; // Define a function with a correct gradient. template <typename T> struct FGood : public GenericDifferentiableFunction<T> { ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericDifferentiableFunction<T>); FGood () : GenericDifferentiableFunction<T> (1, 1, "x * x") {} void impl_compute (result_ref result, const_argument_ref argument) const { result (0) = argument[0] * argument[0]; } void impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const; }; template <> void FGood<EigenMatrixSparse>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const { gradient.insert (0) = 2 * argument[0]; } template <typename T> void FGood<T>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const { gradient (0) = 2 * argument[0]; } // Define a function with a bad gradient. template <typename T> struct FBad : public GenericDifferentiableFunction<T> { ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericDifferentiableFunction<T>); FBad () : GenericDifferentiableFunction<T> (1, 1, "x * x") {} void impl_compute (result_ref result, const_argument_ref argument) const { result (0) = argument[0] * argument[0]; } void impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const; }; template <> void FBad<EigenMatrixSparse>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const { gradient.insert (0) = 5 * argument[0] + 42; } template <typename T> void FBad<T>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const { gradient (0) = 5 * argument[0] + 42; } // Define a polynomial function. template <typename T> struct Polynomial : public GenericDifferentiableFunction<T> { ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericDifferentiableFunction<T>); Polynomial () : GenericDifferentiableFunction<T> (1, 1) {} void impl_compute (result_ref result, const_argument_ref argument) const { result (0) = -24 * argument[0] * argument[0] + 33 * argument[0] + 5; } void impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const; }; template <> void Polynomial<EigenMatrixSparse>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const { gradient.insert (0) = -42 * argument[0] + 33; } template <typename T> void Polynomial<T>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const { gradient (0) = -42 * argument[0] + 33; } // Define a function that draws a circle. template <typename T> struct CircleXY : public GenericDifferentiableFunction<T> { ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericDifferentiableFunction<T>); CircleXY () : GenericDifferentiableFunction<T> (1, 2) {} void impl_compute (result_ref result, const_argument_ref argument) const { result (0) = sin (argument[0]); result (1) = cos (argument[0]); } void impl_gradient (gradient_ref result, const_argument_ref argument, size_type idFunction) const; }; template <> void CircleXY<EigenMatrixSparse>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type idFunction) const { switch (idFunction) { case 0: gradient.insert (0) = cos (argument[0]); break; case 1: gradient.insert (0) = -sin (argument[0]); break; default: assert (0); } } template <typename T> void CircleXY<T>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type idFunction) const { switch (idFunction) { case 0: gradient (0) = cos (argument[0]); break; case 1: gradient (0) = -sin (argument[0]); break; default: assert (0); } } // Define ``f(x,y) = x * y'' function. template <typename T> struct Times : public GenericDifferentiableFunction<T> { ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericDifferentiableFunction<T>); Times () : GenericDifferentiableFunction<T> (2, 1) {} void impl_compute (result_ref result, const_argument_ref argument) const { result (0) = argument[0] * argument[1]; } void impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const; }; template <> void Times<EigenMatrixSparse>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const { gradient.insert (0) = argument[1]; gradient.insert (1) = argument[0]; } template <typename T> void Times<T>::impl_gradient (gradient_ref gradient, const_argument_ref argument, size_type) const { gradient (0) = argument[1]; gradient (1) = argument[0]; } template <typename T> void displayGradient (boost::shared_ptr<boost::test_tools::output_test_stream> output, const GenericDifferentiableFunction<T>&, typename GenericDifferentiableFunction<T>::const_argument_ref, typename GenericDifferentiableFunction<T>::size_type i = 0); template <typename T> void displayGradient (boost::shared_ptr<boost::test_tools::output_test_stream> output, const GenericDifferentiableFunction<T>& function, typename GenericDifferentiableFunction<T>::const_argument_ref x, typename GenericDifferentiableFunction<T>::size_type i) { GenericFiniteDifferenceGradient<T> fdfunction (function); typename GenericFiniteDifferenceGradient<T>::gradient_t grad = function.gradient (x, i); typename GenericFiniteDifferenceGradient<T>::gradient_t fdgrad = fdfunction.gradient (x, i); (*output) << "#" << grad << std::endl << "#" << fdgrad << std::endl; } template <> void displayGradient<roboptim::EigenMatrixSparse> (boost::shared_ptr<boost::test_tools::output_test_stream> output, const GenericDifferentiableFunction<roboptim::EigenMatrixSparse>& function, GenericDifferentiableFunction<roboptim::EigenMatrixSparse>::const_argument_ref x, GenericDifferentiableFunction<roboptim::EigenMatrixSparse>:: size_type i) { GenericFiniteDifferenceGradient<roboptim::EigenMatrixSparse> fdfunction (function); GenericFiniteDifferenceGradient<roboptim::EigenMatrixSparse>:: gradient_t grad = function.gradient (x, i); GenericFiniteDifferenceGradient<roboptim::EigenMatrixSparse>:: gradient_t fdgrad = fdfunction.gradient (x, i); (*output) << "#" << sparse_to_dense(grad) << std::endl << "#" << sparse_to_dense(fdgrad) << std::endl; } BOOST_FIXTURE_TEST_SUITE (core, TestSuiteConfiguration) typedef boost::mpl::list< ::roboptim::EigenMatrixDense, ::roboptim::EigenMatrixSparse> functionTypes_t; BOOST_AUTO_TEST_CASE_TEMPLATE (finite_difference_gradient, T, functionTypes_t) { boost::shared_ptr<boost::test_tools::output_test_stream> output = retrievePattern ("finite-difference-gradient"); FGood<T> fg; FBad<T> fb; CircleXY<T> sq; Times<T> times; typename FGood<T>::vector_t x (1); for (x[0] = -10.; x[0] < 10.; x[0] += 1.) { (*output) << "#Check gradient at x = " << x[0] << std::endl; (*output) << "# Good" << std::endl; displayGradient (output, fg, x); (*output) << "# Bad" << std::endl; displayGradient (output, fb, x); (*output) << "# Circle" << std::endl; displayGradient (output, sq, x); displayGradient (output, sq, x, 1); BOOST_CHECK (checkGradient (fg, 0, x)); BOOST_CHECK (! checkGradient (fb, 0, x)); BOOST_CHECK_THROW (checkGradientAndThrow (fb, 0, x), ::roboptim::BadGradient<T>); BOOST_CHECK_THROW (checkJacobianAndThrow (fb, x), ::roboptim::BadJacobian<T>); BOOST_CHECK (checkGradient (sq, 0, x)); BOOST_CHECK (checkGradient (sq, 1, x)); checkGradientAndThrow (sq, 0, x); checkGradientAndThrow (sq, 1, x); } x.resize (2); for (x[1] = -10.; x[1] < 10.; x[1] += 1.) for (x[0] = -10.; x[0] < 10.; x[0] += 1.) { (*output) << "# Times at x = " << x << std::endl; displayGradient (output, times, x); BOOST_CHECK (checkGradient (times, 0, x)); checkGradientAndThrow (times, 0, x); } Gnuplot gnuplot = Gnuplot::make_interactive_gnuplot (false); GenericFiniteDifferenceGradient< T, finiteDifferenceGradientPolicies::Simple<T> > fg_fd (fg, 10.); Polynomial<T> p; GenericFiniteDifferenceGradient< T, finiteDifferenceGradientPolicies::Simple<T> > p_fd (p, 10.); Function::discreteInterval_t interval (-100., 100., 1.); (*output) << (gnuplot << set ("multiplot layout 2,2") << plot (fg, interval) << plot (fg_fd, interval) << plot (p, interval) << plot (p_fd, interval) << unset ("multiplot") ); std::cout << output->str () << std::endl; BOOST_CHECK (output->match_pattern ()); } BOOST_AUTO_TEST_SUITE_END ()