Classes | |
class | roboptim::GenericFiniteDifferenceGradient< T, FdgPolicy > |
Compute automatically a gradient with finite differences. More... | |
class | roboptim::GenericConstantFunction< T > |
Constant function. More... | |
class | roboptim::Cos< T > |
Cos function. More... | |
class | roboptim::GenericIdentityFunction< T > |
Identity function. More... | |
class | roboptim::Polynomial< T > |
Polynomial function. More... | |
class | roboptim::Sin< T > |
Sin function. More... | |
class | roboptim::NTimesDerivableFunction< 2 > |
Explicit specialization for the stop case of NTimesDerivable class. More... | |
class | roboptim::NTimesDerivableFunction< DerivabilityOrder > |
Define a function, derivable n times ( ). More... | |
class | roboptim::GenericNumericLinearFunction< T > |
Build a linear function from a vector and a matrix. More... | |
class | roboptim::GenericNumericQuadraticFunction< T > |
Build a quadratic function from a matrix and a vector. More... | |
Functions | |
template<typename T > | |
bool | roboptim::checkGradient (const GenericDifferentiableFunction< T > &function, typename GenericDifferentiableFunction< T >::size_type functionId, typename GenericDifferentiableFunction< T >::const_argument_ref x, typename GenericDifferentiableFunction< T >::value_type threshold=finiteDifferenceThreshold) |
Check if a gradient is valid. | |
template<typename T > | |
void | roboptim::checkGradientAndThrow (const GenericDifferentiableFunction< T > &function, typename GenericDifferentiableFunction< T >::size_type functionId, typename GenericDifferentiableFunction< T >::const_argument_ref x, typename GenericDifferentiableFunction< T >::value_type threshold=finiteDifferenceThreshold) throw (BadGradient<T>) |
template<typename T > | |
bool | roboptim::checkJacobian (const GenericDifferentiableFunction< T > &function, typename GenericDifferentiableFunction< T >::const_argument_ref x, typename GenericDifferentiableFunction< T >::value_type threshold=finiteDifferenceThreshold) |
Check if a Jacobian is valid. | |
template<typename T > | |
void | roboptim::checkJacobianAndThrow (const GenericDifferentiableFunction< T > &function, typename GenericDifferentiableFunction< T >::const_argument_ref x, typename GenericDifferentiableFunction< T >::value_type threshold=finiteDifferenceThreshold) throw (BadJacobian<T>) |
void | roboptim::Cos< T >::impl_gradient (gradient_ref gradient, const_argument_ref x, size_type) const |
Gradient evaluation. | |
void | roboptim::Cos< T >::impl_jacobian (jacobian_ref jacobian, const_argument_ref x) const |
Jacobian evaluation. | |
void | roboptim::Cos< T >::impl_hessian (hessian_ref hessian, const_argument_ref x, size_type) const |
Hessian evaluation. | |
void | roboptim::GenericIdentityFunction< T >::impl_gradient (gradient_ref gradient, const_argument_ref, size_type idFunction) const |
Gradient evaluation. | |
void | roboptim::Sin< T >::impl_gradient (gradient_ref gradient, const_argument_ref x, size_type) const |
Gradient evaluation. | |
void | roboptim::Sin< T >::impl_jacobian (jacobian_ref jacobian, const_argument_ref x) const |
Jacobian evaluation. | |
void | roboptim::Sin< T >::impl_hessian (hessian_ref hessian, const_argument_ref x, size_type) const |
Hessian evaluation. |
bool roboptim::checkGradient | ( | const GenericDifferentiableFunction< T > & | function, |
typename GenericDifferentiableFunction< T >::size_type | functionId, | ||
typename GenericDifferentiableFunction< T >::const_argument_ref | x, | ||
typename GenericDifferentiableFunction< T >::value_type | threshold = finiteDifferenceThreshold |
||
) |
Check if a gradient is valid.
Check if a gradient is valid by comparing the distance between its gradient and an automatically computed finite differences gradient.
function | function that will be checked |
functionId | function id in split representation |
x | point where the gradient will be evaluated |
threshold | maximum tolerated error |
References roboptim::allclose(), and roboptim::GenericDifferentiableFunction< T >::gradient().
Referenced by roboptim::checkGradientAndThrow().
void roboptim::checkGradientAndThrow | ( | const GenericDifferentiableFunction< T > & | function, |
typename GenericDifferentiableFunction< T >::size_type | functionId, | ||
typename GenericDifferentiableFunction< T >::const_argument_ref | x, | ||
typename GenericDifferentiableFunction< T >::value_type | threshold = finiteDifferenceThreshold |
||
) | throw (BadGradient<T>) |
References roboptim::checkGradient(), and roboptim::GenericDifferentiableFunction< T >::gradient().
bool roboptim::checkJacobian | ( | const GenericDifferentiableFunction< T > & | function, |
typename GenericDifferentiableFunction< T >::const_argument_ref | x, | ||
typename GenericDifferentiableFunction< T >::value_type | threshold = finiteDifferenceThreshold |
||
) |
Check if a Jacobian is valid.
Check if a Jacobian is valid by comparing the distance between the matrix and an automatically computed finite differences Jacobian.
function | function that will be checked |
x | point where the Jacobian will be evaluated |
threshold | maximum tolerated error |
References roboptim::allclose(), and roboptim::GenericDifferentiableFunction< T >::jacobian().
Referenced by roboptim::checkJacobianAndThrow().
void roboptim::checkJacobianAndThrow | ( | const GenericDifferentiableFunction< T > & | function, |
typename GenericDifferentiableFunction< T >::const_argument_ref | x, | ||
typename GenericDifferentiableFunction< T >::value_type | threshold = finiteDifferenceThreshold |
||
) | throw (BadJacobian<T>) |
References roboptim::checkJacobian(), and roboptim::GenericDifferentiableFunction< T >::jacobian().
void roboptim::Sin< T >::impl_gradient | ( | gradient_ref | gradient, |
const_argument_ref | argument, | ||
size_type | functionId | ||
) | const [protected, virtual] |
Gradient evaluation.
Compute the gradient, has to be implemented in concrete classes. The gradient is computed for a specific sub-function which id is passed through the functionId argument.
gradient | gradient will be store in this argument |
argument | point where the gradient will be computed |
functionId | evaluated function id in the split representation |
Implements roboptim::GenericDifferentiableFunction< T >.
void roboptim::Cos< T >::impl_gradient | ( | gradient_ref | gradient, |
const_argument_ref | argument, | ||
size_type | functionId | ||
) | const [protected, virtual] |
Gradient evaluation.
Compute the gradient, has to be implemented in concrete classes. The gradient is computed for a specific sub-function which id is passed through the functionId argument.
gradient | gradient will be store in this argument |
argument | point where the gradient will be computed |
functionId | evaluated function id in the split representation |
Implements roboptim::GenericDifferentiableFunction< T >.
void roboptim::GenericIdentityFunction< T >::impl_gradient | ( | gradient_ref | gradient, |
const_argument_ref | argument, | ||
size_type | functionId | ||
) | const [protected, virtual] |
Gradient evaluation.
Compute the gradient, has to be implemented in concrete classes. The gradient is computed for a specific sub-function which id is passed through the functionId argument.
gradient | gradient will be store in this argument |
argument | point where the gradient will be computed |
functionId | evaluated function id in the split representation |
Implements roboptim::GenericDifferentiableFunction< T >.
void roboptim::Sin< T >::impl_hessian | ( | hessian_ref | hessian, |
const_argument_ref | argument, | ||
size_type | functionId | ||
) | const [protected, virtual] |
Hessian evaluation.
Compute the hessian, has to be implemented in concrete classes. The hessian is computed for a specific sub-function which id is passed through the functionId argument.
hessian | hessian will be stored here |
argument | point where the hessian will be computed |
functionId | evaluated function id in the split representation |
Implements roboptim::GenericTwiceDifferentiableFunction< T >.
void roboptim::Cos< T >::impl_hessian | ( | hessian_ref | hessian, |
const_argument_ref | argument, | ||
size_type | functionId | ||
) | const [protected, virtual] |
Hessian evaluation.
Compute the hessian, has to be implemented in concrete classes. The hessian is computed for a specific sub-function which id is passed through the functionId argument.
hessian | hessian will be stored here |
argument | point where the hessian will be computed |
functionId | evaluated function id in the split representation |
Implements roboptim::GenericTwiceDifferentiableFunction< T >.
void roboptim::Sin< T >::impl_jacobian | ( | jacobian_ref | jacobian, |
const_argument_ref | arg | ||
) | const [protected, virtual] |
Jacobian evaluation.
Computes the jacobian, can be overridden by concrete classes. The default behavior is to compute the jacobian from the gradient.
jacobian | jacobian will be store in this argument |
arg | point where the jacobian will be computed |
ROBOPTIM_DO_NOT_CHECK_ALLOCATION
Reimplemented from roboptim::GenericDifferentiableFunction< T >.
void roboptim::Cos< T >::impl_jacobian | ( | jacobian_ref | jacobian, |
const_argument_ref | arg | ||
) | const [protected, virtual] |
Jacobian evaluation.
Computes the jacobian, can be overridden by concrete classes. The default behavior is to compute the jacobian from the gradient.
jacobian | jacobian will be store in this argument |
arg | point where the jacobian will be computed |
ROBOPTIM_DO_NOT_CHECK_ALLOCATION
Reimplemented from roboptim::GenericDifferentiableFunction< T >.