Identity function. More...
#include <roboptim/core/function/identity.hh>
Public Member Functions | |
ROBOPTIM_TWICE_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericLinearFunction< T >) | |
GenericIdentityFunction (const vector_t &offset) | |
Build an identity function. | |
~GenericIdentityFunction () | |
virtual std::ostream & | print (std::ostream &o) const |
Display the function on the specified output stream. | |
Protected Member Functions | |
void | impl_compute (result_ref result, const_argument_ref argument) const |
Function evaluation. | |
void | impl_jacobian (jacobian_ref jacobian, const_argument_ref) const |
Jacobian evaluation. | |
void | impl_gradient (gradient_ref gradient, const_argument_ref, size_type idFunction) const |
Gradient evaluation. | |
template<> | |
void | impl_gradient (gradient_ref gradient, const_argument_ref, size_type idFunction) const |
Gradient evaluation. |
Identity function.
Implement a linear function using the formula:
where and are set when the class is instantiated.
roboptim::GenericIdentityFunction< T >::GenericIdentityFunction | ( | const vector_t & | offset | ) | [inline] |
Build an identity function.
offset | identity function offset |
roboptim::GenericIdentityFunction< T >::~GenericIdentityFunction | ( | ) | [inline] |
void roboptim::GenericIdentityFunction< T >::impl_compute | ( | result_ref | result, |
const_argument_ref | argument | ||
) | const [inline, protected, virtual] |
Function evaluation.
Evaluate the function, has to be implemented in concrete classes.
result | result will be stored in this vector |
argument | point at which the function will be evaluated |
Implements roboptim::GenericFunction< T >.
void roboptim::GenericIdentityFunction< EigenMatrixSparse >::impl_gradient | ( | gradient_ref | gradient, |
const_argument_ref | argument, | ||
size_type | functionId | ||
) | const [inline, protected, virtual] |
Gradient evaluation.
Compute the gradient, has to be implemented in concrete classes. The gradient is computed for a specific sub-function which id is passed through the functionId argument.
gradient | gradient will be store in this argument |
argument | point where the gradient will be computed |
functionId | evaluated function id in the split representation |
Implements roboptim::GenericDifferentiableFunction< T >.
void roboptim::GenericIdentityFunction< T >::impl_jacobian | ( | jacobian_ref | jacobian, |
const_argument_ref | arg | ||
) | const [inline, protected, virtual] |
Jacobian evaluation.
Computes the jacobian, can be overridden by concrete classes. The default behavior is to compute the jacobian from the gradient.
jacobian | jacobian will be store in this argument |
arg | point where the jacobian will be computed |
ROBOPTIM_DO_NOT_CHECK_ALLOCATION
Reimplemented from roboptim::GenericDifferentiableFunction< T >.
virtual std::ostream& roboptim::GenericIdentityFunction< T >::print | ( | std::ostream & | o | ) | const [inline, virtual] |
Display the function on the specified output stream.
o | output stream used for display |
Reimplemented from roboptim::GenericLinearFunction< T >.
References roboptim::decindent(), roboptim::iendl(), and roboptim::incindent().
roboptim::GenericIdentityFunction< T >::ROBOPTIM_TWICE_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ | ( | GenericLinearFunction< T > | ) |