Polynomial function. More...
#include <roboptim/core/function/polynomial.hh>
Public Member Functions | |
ROBOPTIM_TWICE_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ (GenericTwiceDifferentiableFunction< T >) | |
Polynomial (const_vector_ref coefficients) | |
Build a polynomial function. | |
virtual | ~Polynomial () |
virtual std::ostream & | print (std::ostream &o) const |
Display the function on the specified output stream. | |
Protected Member Functions | |
void | impl_compute (result_ref result, const_argument_ref x) const |
Function evaluation. | |
void | impl_gradient (gradient_ref gradient, const_argument_ref x, size_type) const |
Gradient evaluation. | |
void | impl_jacobian (jacobian_ref jacobian, const_argument_ref x) const |
Jacobian evaluation. | |
void | impl_hessian (hessian_ref hessian, const_argument_ref x, size_type) const |
Hessian evaluation. | |
value_type | applyPolynomial (const_vector_ref coeffs, const_argument_ref x) const |
Implement Horner's method. |
Polynomial function.
Implement a polynomial function using the formula:
where polynomial coefficients are set when the class is instanciated
roboptim::Polynomial< T >::Polynomial | ( | const_vector_ref | coefficients | ) | [explicit] |
Build a polynomial function.
coefficients | polynomial coefficients given in increasing degree order |
std::runtime_error |
virtual roboptim::Polynomial< T >::~Polynomial | ( | ) | [inline, virtual] |
Polynomial< T >::value_type roboptim::Polynomial< T >::applyPolynomial | ( | const_vector_ref | coeffs, |
const_argument_ref | x | ||
) | const [protected] |
Implement Horner's method.
void roboptim::Polynomial< T >::impl_compute | ( | result_ref | result, |
const_argument_ref | argument | ||
) | const [protected, virtual] |
Function evaluation.
Evaluate the function, has to be implemented in concrete classes.
result | result will be stored in this vector |
argument | point at which the function will be evaluated |
Implements roboptim::GenericFunction< T >.
void roboptim::Polynomial< T >::impl_gradient | ( | gradient_ref | gradient, |
const_argument_ref | argument, | ||
size_type | functionId | ||
) | const [protected, virtual] |
Gradient evaluation.
Compute the gradient, has to be implemented in concrete classes. The gradient is computed for a specific sub-function which id is passed through the functionId argument.
gradient | gradient will be store in this argument |
argument | point where the gradient will be computed |
functionId | evaluated function id in the split representation |
Implements roboptim::GenericDifferentiableFunction< T >.
void roboptim::Polynomial< T >::impl_hessian | ( | hessian_ref | hessian, |
const_argument_ref | argument, | ||
size_type | functionId | ||
) | const [protected, virtual] |
Hessian evaluation.
Compute the hessian, has to be implemented in concrete classes. The hessian is computed for a specific sub-function which id is passed through the functionId argument.
hessian | hessian will be stored here |
argument | point where the hessian will be computed |
functionId | evaluated function id in the split representation |
Implements roboptim::GenericTwiceDifferentiableFunction< T >.
void roboptim::Polynomial< T >::impl_jacobian | ( | jacobian_ref | jacobian, |
const_argument_ref | arg | ||
) | const [protected, virtual] |
Jacobian evaluation.
Computes the jacobian, can be overridden by concrete classes. The default behavior is to compute the jacobian from the gradient.
jacobian | jacobian will be store in this argument |
arg | point where the jacobian will be computed |
Reimplemented from roboptim::GenericDifferentiableFunction< T >.
std::ostream & roboptim::Polynomial< T >::print | ( | std::ostream & | o | ) | const [virtual] |
Display the function on the specified output stream.
o | output stream used for display |
Reimplemented from roboptim::GenericTwiceDifferentiableFunction< T >.
References roboptim::decindent(), roboptim::iendl(), and roboptim::incindent().
roboptim::Polynomial< T >::ROBOPTIM_TWICE_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS_ | ( | GenericTwiceDifferentiableFunction< T > | ) |