All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
numeric-quadratic-function.cc

Example shows numeric quadratic function use.

// Copyright (C) 2009 by Thomas Moulard, AIST, CNRS, INRIA.
//
// This file is part of the roboptim.
//
// roboptim is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// roboptim is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with roboptim. If not, see <http://www.gnu.org/licenses/>.
#include "shared-tests/fixture.hh"
#include <iostream>
#include <boost/type_traits/is_same.hpp>
using namespace roboptim;
typedef boost::mpl::list< ::roboptim::EigenMatrixDense,
BOOST_FIXTURE_TEST_SUITE (core, TestSuiteConfiguration)
BOOST_AUTO_TEST_CASE_TEMPLATE (numeric_quadratic_function, T, functionTypes_t)
{
boost::shared_ptr<boost::test_tools::output_test_stream>
output = retrievePattern ("numeric-quadratic-function");
a.setZero ();
b.setZero ();
for (int i = 0; i < 5; ++i)
{
a.coeffRef (i,i) = 1.;
x[i] = static_cast<Function::value_type> (i);
}
(*output) << f << '\n';
(*output) << "x = " << x << '\n';
(*output) << "f(x) = " << f (x) << '\n';
(*output) << "J(x) = " << toDense (f.jacobian (x)) << '\n';
(*output) << "G(x) = " << toDense (f.gradient (x, 0)) << '\n';
(*output) << "H(x) = " << toDense (f.hessian (x, 0)) << '\n';
std::cout << output->str () << std::endl;
if (boost::is_same<T, EigenMatrixDense>::value)
BOOST_CHECK (output->match_pattern ());
for (int i = 0; i < 10; ++i)
{
for (int j = 0; j < 5; ++j)
x[j] = std::ceil (rand () % 50);
std::cout << "x = " << x << '\n';
std::cout << "f(x) = " << f (x) << '\n';
std::cout << "J(x) = " << f.jacobian (x) << '\n';
std::cout << "G(x) = " << f.gradient (x, 0) << '\n';
std::cout << "H(x) = " << f.hessian (x, 0) << '\n';
matrix_t J (1, 5);
for (typename matrix_t::Index i = 0; i < 5; ++i)
J.coeffRef (0, i) = 2 * x[i];
for (typename matrix_t::Index i = 0; i < 5; ++i)
{
std::cout << f.jacobian (x).coeffRef (0, i) << '\n';
std::cout << J.coeffRef (0, i) << '\n';
}
BOOST_CHECK (allclose (f.jacobian (x), J));
BOOST_CHECK (allclose (f.hessian (x, 0), 2*a));
BOOST_CHECK (checkGradient (f, 0, x));
BOOST_CHECK (checkJacobian (f, x));
}
}
typedef boost::mpl::list< ::roboptim::EigenMatrixSparse> sparseOnly_t;
BOOST_AUTO_TEST_CASE_TEMPLATE (random_gradient_check, T, sparseOnly_t)
{
for (int randomTry = 0; randomTry < 10; ++randomTry)
{
a.setZero ();
b.setZero ();
x.setZero ();
for (typename GenericNumericQuadraticFunction<T>::matrix_t::Index i = 0; i < 5; ++i)
for (typename GenericNumericQuadraticFunction<T>::matrix_t::Index j = 0; j < 5; ++j)
a.insert (i, j) = 0.;
for (typename GenericNumericQuadraticFunction<T>::matrix_t::Index i = 0; i < 5; ++i)
for (typename GenericNumericQuadraticFunction<T>::matrix_t::Index j = 0; j < 5; ++j)
a.coeffRef (i, j) = a.coeffRef (j, i) = static_cast<double> (std::rand () / RAND_MAX);
for (int i = 0; i < 10; ++i)
{
for (int j = 0; j < 5; ++j)
x[j] = std::ceil (rand () % 50);
BOOST_CHECK (checkGradient (f, 0, x));
BOOST_CHECK (checkJacobian (f, x));
}
}
}
BOOST_AUTO_TEST_SUITE_END ()